Screening the Reference Genes for Quantitative Gene Expression by RT-qPCR During SE Initial Dedifferentiation in Four Gossypium hirsutum Cultivars that Have Different SE Capability

Author:

Cao Aiping,Shao Dongnan,Cui Baiming,Tong Xuecheng,Zheng Yinying,Sun Jie,Li HongbinORCID

Abstract

RNA sequencing (RNA-Seq)-based gene expression analysis is applicable to a wide range of biological purposes in various species. Reverse transcription quantitative PCR (RT-qPCR) is also used to assess target gene expression utilizing stably expressed reference genes as internal control under a given set of conditions. However, investigations of the reference genes for RT-qPCR normalization in the process of somatic embryogenesis (SE) initial dedifferentiation in Gossypium hirsutum are rarely reported. In this study, on the basis of our previous transcriptome data of three different induction stages during SE initial dedifferentiation process in four G. hirsutum cultivars that have different SE capability, 15 candidate genes were selected during SE initial dedifferentiation process, and their expression stability was evaluated by geNorm, NormFinder, and BestKeeper. The results indicated that the two genes of endonuclease 4 (ENDO4) and 18S ribosomal RNA (18S rRNA) showed stable expression in the four different G. hirsutum cultivars, endowing them to be appropriate reference genes during three induction stages in the four cotton cultivars. In addition, the stability and reliability of the two reference genes of ENDO4 and 18S rRNA were further verified by comparing the expressions of auxin-responsive protein 22 (AUX22) and ethylene-responsive transcription factor 17 (ERF17) between RT-qPCR results and the RNA-seq data, which showed strong positive correlation coefficient (R2 = 0.8396–0.9984), validating again the steady expression of ENDO4 and 18S rRNA as the reliable reference genes. Our results provide effective reference genes for RT-qPCR normalization during SE process in different G. hirsutum cultivars.

Funder

National Natural Science Foundation of China

Scientific and Technological Achievement Transformation Project of Bingtuan

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3