Abstract
Meloidogyne graminicola is a facultative meiotic parthenogenetic root-knot nematode (RKN) that seriously threatens agriculture worldwide. We have little understanding of its origin, genomic structure, and intraspecific diversity. Such information would offer better knowledge of how this nematode successfully damages rice in many different environments. Previous studies on nuclear ribosomal DNA (nrDNA) suggested a close phylogenetic relationship between M. graminicola and Meloidogyne oryzae, despite their different modes of reproduction and geographical distribution. In order to clarify the evolutionary history of these two species and explore their molecular intraspecific diversity, we sequenced the genome of 12 M. graminicola isolates, representing populations of worldwide origins, and two South American isolates of M. oryzae. k-mer analysis of their nuclear genome and the detection of divergent homologous genomic sequences indicate that both species show a high proportion of heterozygous sites (ca. 1–2%), which had never been previously reported in facultative meiotic parthenogenetic RKNs. These analyses also point to a distinct ploidy level in each species, compatible with a diploid M. graminicola and a triploid M. oryzae. Phylogenetic analyses of mitochondrial genomes and three nuclear genomic sequences confirm close relationships between these two species, with M. graminicola being a putative parent of M. oryzae. In addition, comparative mitogenomics of those 12 M. graminicola isolates with a Chinese published isolate reveal only 15 polymorphisms that are phylogenetically non-informative. Eight mitotypes are distinguished, the most common one being shared by distant populations from Asia and America. This low intraspecific diversity, coupled with a lack of phylogeographic signal, suggests a recent worldwide expansion of M. graminicola.
Funder
Agence Nationale de la Recherche
Subject
Genetics(clinical),Genetics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献