Correction of NR2E3 Associated Enhanced S-cone Syndrome Patient-specific iPSCs using CRISPR-Cas9

Author:

Bohrer Laura,Wiley Luke,Burnight Erin,Cooke Jessica,Giacalone Joseph,Anfinson Kristin,Andorf Jeaneen,Mullins RobertORCID,Stone Edwin,Tucker Budd

Abstract

Enhanced S-cone syndrome (ESCS) is caused by recessive mutations in the photoreceptor cell transcription factor NR2E3. Loss of NR2E3 is characterized by repression of rod photoreceptor cell gene expression, over-expansion of the S-cone photoreceptor cell population, and varying degrees of M- and L-cone photoreceptor cell development. In this study, we developed a CRISPR-based homology-directed repair strategy and corrected two different disease-causing NR2E3 mutations in patient-derived induced pluripotent stem cells (iPSCs) generated from two affected individuals. In addition, one patient’s iPSCs were differentiated into retinal cells and NR2E3 transcription was evaluated in CRISPR corrected and uncorrected clones. The patient’s c.119-2A>C mutation caused the inclusion of a portion of intron 1, the creation of a frame shift, and generation of a premature stop codon. In summary, we used a single set of CRISPR reagents to correct different mutations in iPSCs generated from two individuals with ESCS. In doing so we demonstrate the advantage of using retinal cells derived from affected patients over artificial in vitro model systems when attempting to demonstrate pathophysiologic mechanisms of specific mutations.

Funder

National Eye Institute

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3