Role of Autophagy-Related Gene atg22 in Developmental Process and Virulence of Fusarium oxysporum

Author:

Khalid A. Rehman,Zhang Shumin,Luo Xiumei,Mehmood Khalid,Rahim Junaid,Shaheen Hamayun,Dong Pan,Qiu Dan,Ren Maozhi

Abstract

Autophagy is a universal catabolic process preserved in eukaryotes from yeast to plants and mammals. The main purpose of autophagy is to degrade cytoplasmic materials within the lysosome/vacuole lumen and generate an internal nutrient pool that is recycled back to the cytosol during nutrient stress. Here, Fusarium oxysporum was utilized as a model organism, and we found that autophagy assumes an imperative job in affecting the morphology, development, improvement and pathogenicity of F. oxysporum. The search of autophagy pathway components from the F. oxysporum genome database recognized putative orthologs of 16 core autophagy-related (ATG) genes of yeast, which additionally incorporate the ubiquitin-like protein atg22. Present study elucidates the unreported role of Foatg22 in formation of autophagosomes. The deletion mutant of Foatg22 did not demonstrate positive monodansylcadaverine (MDC) staining, which exposed that Foatg22 is required for autophagy in F. oxysporum. Moreover, the ∆Foatg22 strains exhibited a decrease in hyphal development and conidiation, and reduction in pathogenicity on potato tubers and leaves of potato plant. The hyphae of ∆Foatg22 mutants were less dense when contrasted with wild-type (WT) and overexpression (OE) mutants. Our perceptions demonstrated that Foatg22 might be a key regulator for the control of dry rot disease in tuber and root crops during postharvest stage.

Funder

National Natural Science Foundation of China

Chongqing Frontier and Applied Basic Research

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference41 articles.

1. A trial for biological control of a pathogenic fungus (Fusarium solani) by some marine microorganisms;El-Kassas;Am. Eurasian. J. Agric. Environ. Sci.,2009

2. Fusarium Dry Rothttp://www.Potatodiseases.Org/contact.html

3. Seed treatment application-timing options for control of fusarium decay and sprout rot of cut seedpieces

4. Toxinogenicity of Fusarium Species Causing Dry rot of Potato Tubers —Fusarium— Chapter 25;Chełkowski,1989

5. Antifungal and sprout regulatory bioactivities of phenylacetic acid, indole-3-acetic acid, and tyrosol isolated from the potato dry rot suppressive bacterium Enterobacter cloacae S11:T:07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3