Microbial Genes for a Circular and Sustainable Bio-PET Economy

Author:

Salvador Manuel,Abdulmutalib Umar,Gonzalez Jaime,Kim Juhyun,Smith Alex A.,Faulon Jean-LoupORCID,Wei RenORCID,Zimmermann WolfgangORCID,Jimenez Jose I.ORCID

Abstract

Plastics have become an important environmental concern due to their durability and resistance to degradation. Out of all plastic materials, polyesters such as polyethylene terephthalate (PET) are amenable to biological degradation due to the action of microbial polyester hydrolases. The hydrolysis products obtained from PET can thereby be used for the synthesis of novel PET as well as become a potential carbon source for microorganisms. In addition, microorganisms and biomass can be used for the synthesis of the constituent monomers of PET from renewable sources. The combination of both biodegradation and biosynthesis would enable a completely circular bio-PET economy beyond the conventional recycling processes. Circular strategies like this could contribute to significantly decreasing the environmental impact of our dependence on this polymer. Here we review the efforts made towards turning PET into a viable feedstock for microbial transformations. We highlight current bottlenecks in degradation of the polymer and metabolism of the monomers, and we showcase fully biological or semisynthetic processes leading to the synthesis of PET from sustainable substrates.

Funder

Horizon 2020 Framework Programme

Biotechnology and Biological Sciences Research Council

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3