Newton Recursion Based Random Data-Reusing Generalized Maximum Correntropy Criterion Adaptive Filtering Algorithm

Author:

Zhao Ji,Mu Yuzong,Qiao Yanping,Li Qiang

Abstract

For system identification under impulsive-noise environments, the gradient-based generalized maximum correntropy criterion (GB-GMCC) algorithm can achieve a desirable filtering performance. However, the gradient method only uses the information of the first-order derivative, and the corresponding stagnation point of the method can be a maximum point, a minimum point or a saddle point, and thus the gradient method may not always be a good selection. Furthermore, GB-GMCC merely uses the current input signal to update the weight vector; facing the highly correlated input signal, the convergence rate of GB-GMCC will be dramatically damaged. To overcome these problems, based on the Newton recursion method and the data-reusing method, this paper proposes a robust adaptive filtering algorithm, which is called the Newton recursion-based data-reusing GMCC (NR-DR-GMCC). On the one hand, based on the Newton recursion method, NR-DR-GMCC can use the information of the second-order derivative to update the weight vector. On the other hand, by using the data-reusing method, our proposal uses the information of the latest M input vectors to improve the convergence performance of GB-GMCC. In addition, to further enhance the filtering performance of NR-DR-GMCC, a random strategy can be used to extract more information from the past M input vectors, and thus we obtain an enhanced NR-DR-GMCC algorithm, which is called the Newton recursion-based random data-reusing GMCC (NR-RDR-GMCC) algorithm. Compared with existing algorithms, simulation results under system identification and acoustic echo cancellation are conducted and validate that NR-RDR-GMCC can provide a better filtering performance in terms of filtering accuracy and convergence rate.

Funder

Southwest University of Science and Technology Doctor Fund

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference32 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust fixed‐point Kalman smoother for bilinear state‐space systems with non‐Gaussian noise and parametric uncertainties;International Journal of Adaptive Control and Signal Processing;2024-08-14

2. A Kernel Normalized Data-Reusing Generalized Maximum Correntropy Algorithm;IEEE Transactions on Circuits and Systems II: Express Briefs;2024-07

3. Maximum Complex Correntropy Criterion Adaptive IIR Filtering Based on Gauss-Newton Approach;IEEE Transactions on Circuits and Systems II: Express Briefs;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3