On Finding a Projected Coordinate Reference System

Author:

Stal CornelisORCID,De Sloover LarsORCID,Verbeurgt JeffreyORCID,De Wulf AlainORCID

Abstract

The digital age has brought about an explosion in the growth of data, of which data with a geographical component stands out. Proper use of geographical data comes with the need for correct coordinate reference systems (CRSs). They are considered the ultimate binder for interoperability between geospatial data actors and stakeholders. Moreover, CRSs are crucial for the visual and analytical integration of geospatial data from disparate data sources. However, CRSs might be—for numerous reasons—incorrectly assigned or even missing. The result is a time-consuming study of the map, literature, and available resources to ultimately find the alleged right CRS. This study provides a summary of prevailing resources from national mapping agencies of some European countries to address the above problem. Secondly, and most importantly, is the development of an open-source Python-based software package. This software package aims to accurately estimate the best candidate CRS, given a tuple of coordinates at a priori an approximately known location. It is controlled by geocoding the known location and intersecting the resulting coordinate with the bounding box of all CRSs in the EPSG-database. An in-depth review of CRS tools by mapping authorities reveals, in particular, limitations concerning the countries’ spatial areas, in combination with often required know-how of local CRSs. To address these shortcomings, our tool is developed to enable a more generic extraction of CRSs for any given location worldwide. Testing proved successful for 30 different maps, with a grid present on the map and the CRS of the map being included in the EPSG-database.

Publisher

MDPI AG

Subject

General Medicine

Reference45 articles.

1. The information catastrophe

2. Harness the Power of Big Data the IBM Big Data Platform;Zikopoulos,2012

3. Spatial Data Quality: From Description to Application;Van Oort,2006

4. Spatial Data Quality;Shi,2002

5. Quality management, data quality and users, metadata for geographical information;Dassonville,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph analysis on street network in a web browser;Journal of Archaeological Science: Reports;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3