Machine Learning in Urban Tree Canopy Mapping: A Columbia, SC Case Study for Urban Heat Island Analysis

Author:

Morgan Grayson R.1ORCID,Fulham Alexander2ORCID,Farmer T. Grant2

Affiliation:

1. Department of Geography, Brigham Young University, Provo, UT 84602, USA

2. Department of Geography, University of South Carolina, Columbia, SC 29208, USA

Abstract

As the world’s urban population increases to the predicted 70% of the total population, urban infrastructure and built-up land will continue to grow as well. This growth will continue to have an impact on the urban heat island effect in all of the world’s cities. The urban tree canopy has been found to be one of the few factors that can lessen the effects of the urban heat island effect. This study seeks to accomplish two objectives: first, we examine the use of a commonly used machine learning classifier (e.g., Support Vector Machine) for identifying the urban tree canopy using no-cost high resolution NAIP imagery. Second, we seek to use Land Surface Temperature (LST) maps derived from no-cost Landsat thermal imagery to identify correlations between canopy loss and temperature hot spot increases over a 14-year period in Columbia, SC, USA. We found the SVM imagery classifier was highly accurate in classifying both the 2005 imagery (94.3% OA) and the 2019 imagery (94.25% OA) into canopy and other classes. We found the color infrared image available in the 2019 NAIP imagery better for identifying canopy than the true color images available in 2005 (97.8% vs. 90.2%). Visual analysis based on the canopy maps and LST maps showed temperatures rose near areas where tree canopy was lost, and urban development continued. Future studies will seek to improve classification methods by including other classes, other ancillary data sets (e.g., LiDAR), new classification methods (e.g., deep learning), and analytical methods for change detection analysis.

Funder

NOAA RISA/CAP program

Publisher

MDPI AG

Subject

General Medicine

Reference51 articles.

1. (2022, July 28). Urban Development. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview.

2. Oke, T.R. (1995). Wind Climate in Cities, Springer.

3. Urban heat island: Causes, effects and mitigation measures—A Review;Nuruzzaman;Int. J. Environ. Monit. Anal.,2015

4. EPA (2023, March 09). Heat Island Effect, Available online: https://www.epa.gov/heatislands.

5. Healthy environment: The need to mitigate urban heat island effects on human health;Shahmohamadi;Procedia Eng.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3