Laboratory Observations of Preferential Flow Paths in Snow Using Upward-Looking Polarimetric Radar and Hyperspectral Imaging

Author:

Donahue ChristopherORCID,Hammonds Kevin

Abstract

The infiltration of liquid water in a seasonal snowpack is a complex process that consists of two primary mechanisms: a semi-uniform melting front, or matrix flow, and heterogeneous preferential flow paths. Distinguishing between these two mechanisms is important for monitoring snow melt progression, which is relevant for hydrology and avalanche forecasting. It has been demonstrated that a single co-polarized upward-looking radar can be used to track matrix flow, whereas preferential flow paths have yet to be detected. Here, from within a controlled laboratory environment, a continuous polarimetric upward-looking C-band radar was used to monitor melting snow samples to determine if cross-polarized radar returns are sensitive to the presence and development of preferential flow paths. The experimental dataset consisted of six samples, for which the melting process was interrupted at increasing stages of preferential flow path development. Using a new serial-section hyperspectral imaging method, polarimetric radar returns were compared against the three-dimensional liquid water content distribution and preferential flow path morphology. It was observed that the cross-polarized signal increased by 13.1 dB across these experiments. This comparison showed that the metrics used to characterize the flow path morphology are related to the increase in cross-polarized radar returns spanning the six samples, indicating that the upward-looking polarimetric radar has potential to identify preferential flow paths.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3