A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties

Author:

Luhar SalmabanuORCID,Luhar Ismail,Shaikh Faiz Uddin AhmedORCID

Abstract

The development of cracks, owing to a relatively lower tensile strength of concrete, diverse loading, and environmental factors driving the deterioration of structures, is an inescapable key concern for engineers. Reparation and maintenance operations are thus extremely important to prevent cracks from spreading and mitigating the lifetime of structures. However, ease of access to the cracked zone may be challenging, and it also needs funds and manual power. Hence, autonomous sealing of cracks employing microorganisms into the concrete sans manual intervention is a promising solution to the dilemma of the sustainable improvement of concrete. ‘Ureolytic bacteria’, key organism species in rumen-producing ‘urease’ enzymes such as Bacillus pasteurii or subtilis—when induced—are capable of producing calcium carbonate precipitations into the concrete. As their cell wall is anionic, CaCO3 accumulation on their surface is extensive, and the whole cell, therefore, becomes crystalline and ultimately plugs pores and cracks. This natural induction technique is an environmentally friendly method that researchers are studying intensively. This manuscript reviews the application process of bacterial healing to manufacture autonomous self-healing bacterial concrete. Additionally, it provides a brief review of diverse attributes of this novel concrete which demonstrate the variations with the auto-addition of different bacteria, along with an evaluation of crack healing as a result of the addition of these bacteria directly into concrete or after encapsulation in a protective shell. Comparative assessment techniques for autonomous, bio-based self-healing are also discussed, accompanied by progress, potential, modes of application of this technique, and its resultant benefits in the context of strength and durability. Imperatives for quantitative sustainability assessment and industrial adoption are identified, along with the sealing of artificially cracked cement mortar with sand as a filling material in given spaces, as well as urea and CaCl2 medium treatment with Bacillus pasteurii and Sporosarcina bacteria. The assessment of the impact on the compressive strength and rigidity of cement mortar cubes after the addition of bacteria into the mix is also considered. Scanning electron microscope (SEM) images on the function of bacteria in mineral precipitation that is microbiologically induced are also reviewed. Lastly, future research scope and present gaps are recognised and discussed.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3