Fatigue Behavior of Smart Composites with Distributed Fiber Optic Sensors for Offshore Applications

Author:

Drissi-Habti MonssefORCID,Raman Venkadesh

Abstract

Continuous inspection of critical zones is essential to monitor the state of strain within offshore wind blades, thus, enabling appropriate actions to be taken when needed to avoid heavy maintenance. Wind-turbine blades contain various substructures made of composites, sandwich panel, and bond-joined parts that need reliable Structural Health Monitoring (SHM) techniques. Embedded, distributed Fiber-Optic Sensors (FOS) are one of the most promising techniques that are commonly used for large-scale smart composite structures. They are chosen as monitoring systems for their small size, being noise-free, and low electrical risk characteristics. In recent works, we have shown that embedded FOSs can be positioned linearly and/or in whatever position with the scope of providing pieces of information about actual strain in specific locations. However, linear positioning of distributed FOS fails to provide all strain parameters, whereas sinusoidal sensor positioning has been shown to overcome this issue. This method can provide multiparameter strains over the whole area when the sensor is embedded. Nevertheless, and beyond what a sensor can offer as valuable information, the fact remains that it is a “flaw” from the perspective of mechanics and materials. In this article and through some mechanical tests on smart composites, evidence was given that the presence of embedded FOS influences the mechanical behavior of smart composites, whether for quasi-static or fatigue tests, under 3-point bending. Some issues directly related to the fiber-architecture have to be solved.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3