Multiparametric Quantitative Analysis of Photodamage to Skin Using Optical Coherence Tomography

Author:

Tang Han1ORCID,Xu Chen1,Ge Yakun12,Xu Mingen12,Wang Ling12

Affiliation:

1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

2. Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou 310000, China

Abstract

Ultraviolet (UV) irradiation causes 90% of photodamage to skin and long-term exposure to UV irradiation is the largest threat to skin health. To study the mechanism of UV-induced photodamage and the repair of sunburnt skin, the key problem to solve is how to non-destructively and continuously evaluate UV-induced photodamage to skin. In this study, a method to quantitatively analyze the structural and tissue optical parameters of artificial skin (AS) using optical coherence tomography (OCT) was proposed as a way to non-destructively and continuously evaluate the effect of photodamage. AS surface roughness was achieved based on the characteristic peaks of the intensity signal of the OCT images, and this was the basis for quantifying AS cuticle thickness using Dijkstra’s algorithm. Local texture features within the AS were obtained through the gray-level co-occurrence matrix method. A modified depth-resolved algorithm was used to quantify the 3D scattering coefficient distribution within AS based on a single-scattering model. A multiparameter assessment of AS photodamage was carried out, and the results were compared with the MTT experiment results and H&E staining. The results of the UV photodamage experiments showed that the cuticle of the photodamaged model was thicker (56.5%) and had greater surface roughness (14.4%) compared with the normal cultured AS. The angular second moment was greater and the correlation was smaller, which was in agreement with the results of the H&E staining microscopy. The angular second moment and correlation showed a good linear relationship with the UV irradiation dose, illustrating the potential of OCT in measuring internal structural damage. The tissue scattering coefficient of AS correlated well with the MTT results, which can be used to quantify the damage to the bioactivity. The experimental results also demonstrate the anti-photodamage efficacy of the vitamin C factor. Quantitative analysis of structural and tissue optical parameters of AS by OCT enables the non-destructive and continuous detection of AS photodamage in multiple dimensions.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3