Automatic Body Segment and Side Recognition of an Inertial Measurement Unit Sensor during Gait

Author:

Baniasad Mina1ORCID,Martin Robin2,Crevoisier Xavier2,Pichonnaz Claude23,Becce Fabio4ORCID,Aminian Kamiar1ORCID

Affiliation:

1. Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

2. Department of Orthopaedic Surgery and Traumatology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland

3. Department of Physiotherapy, School of Health Sciences HESAV, HES-SO University of Applied Sciences and Arts Western Switzerland, 1011 Lausanne, Switzerland

4. Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland

Abstract

Inertial measurement unit (IMU) sensors are widely used for motion analysis in sports and rehabilitation. The attachment of IMU sensors to predefined body segments and sides (left/right) is complex, time-consuming, and error-prone. Methods for solving the IMU-2-segment (I2S) pairing work properly only for a limited range of gait speeds or require a similar sensor configuration. Our goal was to propose an algorithm that works over a wide range of gait speeds with different sensor configurations while being robust to footwear type and generalizable to pathologic gait patterns. Eight IMU sensors were attached to both feet, shanks, thighs, sacrum, and trunk, and 12 healthy subjects (training dataset) and 22 patients (test dataset) with medial compartment knee osteoarthritis walked at different speeds with/without insole. First, the mean stride time was estimated and IMU signals were scaled. Using a decision tree, the body segment was recognized, followed by the side of the lower limb sensor. The accuracy and precision of the whole algorithm were 99.7% and 99.0%, respectively, for gait speeds ranging from 0.5 to 2.2 m/s. In conclusion, the proposed algorithm was robust to gait speed and footwear type and can be widely used for different sensor configurations.

Funder

Lausanne Orthopedic Research Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3