Numerical Simulation of Electrical Properties of Carbonate Reservoirs Using Digital Rocks

Author:

Hou Yuting12,Liu Die13,Zhao Taiping13,Zhou Jinyu13,Tian Lili13,Kou Xiaopan13,Zhu Baoding13,Nie Xin14ORCID

Affiliation:

1. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi’an 710018, China

2. Exploration Department, PetroChina Changqing Oilfield Company, Xi’an 710018, China

3. Exploration and Development Research Institute, PetroChina Changqing Oilfield Company, Xi’an 710018, China

4. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Yangtze University, Wuhan 430100, China

Abstract

Rock electrical experiments are essential means of researching the conductive properties of rocks and are fundamental to interpreting resistivity logging. Carbonate rocks have more complex pore structures than sandstone, which results in more complex conductive properties. However, conducting experiments on representative rock samples from carbonate reservoirs is difficult, making it challenging to study the micro factors affecting electrical properties. Therefore, researching the conductive properties of carbonate rocks is difficult. To address this, in this paper, three-dimensional (3D) digital rock models with different porosities are generated, and conductive simulations are carried out on these models using the finite element method (FEM). Firstly, a micro-computed tomography (μ-CT) 3D image of a carbonate rock is obtained. Secondly, mathematical morphology-based methods are used on the μ-CT image to generate cores with varying porosities and fluid distributions. Then, the electrical properties are simulated using the FEM method, and the results are analyzed. The results reveal that the formation factor of the reservoir is mainly influenced by the shape and structure of the pores. The Archie equation is more suitable for carbonate reservoirs with water saturation levels greater than 60%. The wettability of the rock can alter the distribution of fluid in the reservoir space under different water saturation conditions. In pure water-wet rocks, the water phase mainly occupies small pores, while the oil phase occupies larger pores. As a result, compared to pure oil-wet rocks, water-wet rocks have more conductive channels and better conductivity. Therefore, it is important to determine the wettability of the rock when calculating water saturation using the Archie equation. The saturation index value of water-wet carbonate rock is about 2, while that of oil-wet rock is around 3–4. This research lays a foundation for studying the electrical conductivity of carbonate reservoirs using digital rocks.

Funder

National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3