Selection of Optimum Pollution Load Reduction and Water Quality Improvement Approaches Using Scenario Based Water Quality Modeling in Little Akaki River, Ethiopia

Author:

Angello ZelalemORCID,Behailu Beshah,Tränckner JensORCID

Abstract

The collective impacts of rapid urbanization, poor pollution management practices and insufficient sanitation infrastructure have driven the water quality deterioration in Little Akaki River (LAR), Ethiopia. Water quality modeling using QUAL2Kw was conducted in the LAR aimed at selecting the optimal water quality improvement and pollution load reduction approaches based on the evaluation of five scenarios: modification of point sources (PS) load (S1), modification of nonpoint sources (NPS) load (S2), simultaneous modification of PS and NPS load (S3), application of local oxygenators and fish passages using cascaded rock ramps (S4), and an integrated scenario (S5). Despite the evaluation of S1 resulting in an average load reduction of Biochemical Oxygen Demand (BOD) (17.72%), PO4-P (37.47%), NO3-N (19.63%), the water quality objective (WQO) in LAR could not be attained. Similarly, though significant improvement of pollution load was found by S2 and S3 evaluation, it did not secure the permissible BOD and PO4-P pollution load in the LAR. Besides, as part of an instream measure, a scenario evaluated using the application of rock ramps (S4) resulted in significant reduction of BOD load. All the individual scenarios were not successful and hence an integration of scenarios (S5) was evaluated in LAR that gave a relatively higher pollutant load reduction rate and ultimately was found a better approach to improve pollution loads in the river. In conclusion, pollution load management and control strategy integrally incorporating the use of source-based wastewater treatment, control of diffuse pollution sources through the application of best management practices and the application of instream measures such as the use of cascaded rock ramps could be a feasible approach for better river water quality management, pollution reduction, aquatic life protection and secure sustainable development in the LAR catchment.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3