Synthesis and Characterization of Zero-Valent Fe-Cu and Fe-Ni Bimetals for the Dehalogenation of Trichloroethylene Vapors

Author:

Settimi Clarissa,Zingaretti DanielaORCID,Sanna Simone,Verginelli IasonORCID,Luisetto IgorORCID,Tebano Antonello,Baciocchi Renato

Abstract

In this study, zero-valent iron-copper (Fe-Cu) and iron-nickel (Fe-Ni) bimetals were prepared by disc milling for the dehalogenation of trichloroethylene vapors. For both Fe-Ni and Fe-Cu, three combinations in terms of percentage of secondary metal added were produced (1%, 5%, 20% by weight) and the formation of the bimetallic phase by milling was evaluated by X-ray diffraction (XRD) analysis. The disc milled bimetals were characterized by a homogenous distribution of Ni or Cu in the Fe phase and micrometric size visible from scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) analysis and by a relatively low specific surface area (0.2–0.7 m2/g) quantified by the Brunauer–Emmett–Teller (BET) method. The reactivity of the produced bimetals was evaluated by batch degradation tests of TCE in the gas phase with 1 day of reaction time. Fe-Ni bimetals have shown better performance in terms of TCE removal (57–75%) than Fe-Cu bimetals (41–55%). The similar specific surface area values found for the produced bimetals indicated that the enhancement in the dehalogenation achieved using bimetals is closely related to the induced catalysis. The obtained results suggest that ZVI-based bimetals produced by disc milling are effective in the dehalogenation of TCE vapors in partially saturated conditions.

Funder

University of Rome Tor Vergata

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3