Improved Metaheuristic-Driven Energy-Aware Cluster-Based Routing Scheme for IoT-Assisted Wireless Sensor Networks

Author:

Lakshmanna KuruvaORCID,Subramani NeelakandanORCID,Alotaibi YouseefORCID,Alghamdi Saleh,Khalafand Osamah Ibrahim,Nanda Ashok Kumar

Abstract

The Internet of Things (IoT) is a network of numerous devices that are consistent with one another via the internet. Wireless sensor networks (WSN) play an integral part in the IoT, which helps to produce seamless data that highly influence the network’s lifetime. Despite the significant applications of the IoT, several challenging issues such as security, energy, load balancing, and storage exist. Energy efficiency is considered to be a vital part of the design of IoT-assisted WSN; this is accomplished by clustering and multi-hop routing techniques. In view of this, we introduce an improved metaheuristic-driven energy-aware cluster-based routing (IMD-EACBR) scheme for IoT-assisted WSN. The proposed IMD-EACBR model intends to achieve maximum energy utilization and lifetime in the network. In order to attain this, the IMD-EACBR model primarily designs an improved Archimedes optimization algorithm-based clustering (IAOAC) technique for cluster head (CH) election and cluster organization. In addition, the IAOAC algorithm computes a suitability purpose that connects multiple structures specifically for energy efficiency, detachment, node degree, and inter-cluster distance. Moreover, teaching–learning-based optimization (TLBO) algorithm-based multi-hop routing (TLBO-MHR) technique is applied for optimum selection of routes to destinations. Furthermore, the TLBO-MHR method originates a suitability purpose using energy and distance metrics. The performance of the IMD-EACBR model has been examined in several aspects. Simulation outcomes demonstrated enhancements of the IMD-EACBR model over recent state-of-the-art approaches. IMD-EACBR is a model that has been proposed for the transmission of emergency data, and the TLBO-MHR technique is one that is based on the requirements for hop count and distance. In the end, the proposed network is subjected to rigorous testing using NS-3.26’s full simulation capabilities. The results of the simulation reveal improvements in performance in terms of the proportion of dead nodes, the lifetime of the network, the amount of energy consumed, the packet delivery ratio (PDR), and the latency.

Funder

Taif University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3