Spatial Models and Neural Network for Identifying Sustainable Transportation Projects with Study Case in Querétaro, an Intermediate Mexican City

Author:

Barreda-Luna Antonio A.ORCID,Rodríguez-Reséndiz JuvenalORCID,Rodríguez-Abreo OmarORCID,Álvarez-Alvarado José ManuelORCID

Abstract

The construction of urban and transport indicators aims for a better diagnosis that enables technical and precise decision-making for the public administration or private investment. Therefore, it is common to make comparisons and observe which has better diagnosis results in a diversity of indexes and models. The present study made a comparative analysis of spatial models using artificial intelligence to estimate transport demand. To achieve this goal, the audit field was recollected in specific urban corridors to measure the indicators. A study case in Querétaro, an emergent city in the Mexican region known as El Bajío, is conducted. Two similar urban avenues in width and length and close to each other were selected to apply a group of spatial models, evaluating the avenues by segments and predicting the public transport demand. The resulting database was analyzed using Artificial Neural Networks. It displays specific indicators that have around 80% of correlations. The results facilitate the localization of the avenue segments with the most volume of activity, supporting interventions in urban renewal and sustainable transportation projects.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference44 articles.

1. Sistemas Complejos: Conceptos, Métodos y Fundamentación Epistemológica de la Investigación Interdisciplinaria;García,2006

2. On the interaction between public transport demand, service quality and fare for social welfare optimisation

3. Our Common Future: The Report of the World Commission on Development,1987

4. The Struggle for Social Sustainability: Moral Conflicts in Global Social Policy;Deeming,2021

5. Manual de Operación para el Reaprovechamiento y la Redensificación de la Ciudad Interior;Bolaños;Ph.D. Thesis,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3