Abstract
This paper proposes a new method to detect bursts in District Metering Areas (DMAs) in water distribution systems. The methodology is divided into three steps. Firstly, Dynamic Time Warping was applied to study the similarity of daily water demand, extract different patterns of water demand, and remove abnormal patterns. In the second stage, according to different water demand patterns, a supervised learning algorithm was adopted for burst detection, which established a leakage identification model for each period of time, respectively, using a sliding time window. Finally, the detection process was performed by calculating the abnormal probability of flow during a certain period by the model and identifying whether a burst occurred according to the set threshold. The method was validated on a case study involving a DMA with engineered pipe-burst events. The results obtained demonstrate that the proposed method can effectively detect bursts, with a low false-alarm rate and high accuracy.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献