A Novel Spread Spectrum and Clustering Mixed Approach with Network Coding for Enhanced Narrowband IoT (NB-IoT) Scalability

Author:

Migabo EmmanuelORCID,Djouani KarimORCID,Kurien AnishORCID

Abstract

The Narrowband Internet of Things (NB-IoT) is a very promising licensed Internet of things (IoT) technology for accommodating massive device connections in 5G and beyond. To enable network scalability, this study proposes a two-layers novel mixed approach that aims not only to create an efficient spectrum sharing among the many NB-IoT devices but also provides an energy-efficient network. On one layer, the approach uses an Adaptive Frequency Hopping Spread Spectrum (AFHSS) technique that uses a lightweight and secure pseudo-random sequence to exploit the channel diversity, to mitigate inter-link and cross-technology interference. On the second layer, the approach consists of a clustering and network coding (data aggregation) approach based on an energy-signal strength mixed gradient. The second layer contributes to offload the BS, allows for energy-efficient network scalability, helps balance the energy consumption of the network, and enhances the overall network lifetime. The proposed mixed strategy algorithm is modelled and simulated using the Matrix Laboratory (MATLAB) Long Term Evolution (LTE) toolbox. The obtained results reveal that the proposed mixed approach enhances network scalability while improving energy efficiency, transmission reliability, and network lifetime when compared to the existing spread spectrum only, nodes clustering only, and mixed approach with no network coding approaches.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference58 articles.

1. IoT Platforms: Enabling the Internet of Thingshttps://cdn.ihs.com/www/pdf/enabling-IOT.pdf

2. A comparative study of LPWAN technologies for large-scale IoT deployment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3