Exploring Electrode Placements to Optimize the Identification and Measurement of Early Auditory Evoked Potentials

Author:

McFarlane Kailyn A.1ORCID,Sanchez Jason Tait123ORCID

Affiliation:

1. Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA

2. Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA

3. Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA

Abstract

Cochlear synaptic loss (termed cochlear synaptopathy) has been suggested to contribute to suprathreshold hearing difficulties. However, its existence and putative effects in humans remain inconclusive, largely due to the heterogeneous methods used across studies to indirectly evaluate the health of cochlear synapses. There is a need to standardize proxies of cochlear synaptopathy to appropriately compare and interpret findings across studies. Early auditory evoked potentials (AEPs), including the compound action potential (AP)/Wave I of the auditory brainstem response are a popular proxy, yet remain variable based on technical considerations. This study evaluated one such consideration—electrode array (i.e., montage)—to optimize the use of early AEP waveforms. In 35 young adults, electrocochleography (ECochG) responses were collected using vertical and horizontal montages. Standard ECochG measures and AP/Wave I and Wave II peak-to-trough amplitudes and latencies were compared between montages. Vertical montage recordings consistently produced significantly larger AP/Wave I peak-to-trough amplitudes compared to horizontal recordings. These findings support the use of a vertical electrode montage for optimal recordings of peripheral cochlear nerve activity. As cochlear synaptopathy continues to be explored in humans, the methods highlighted here should be considered in the development of a standardized assessment.

Funder

Knowles Hearing Center

Publisher

MDPI AG

Subject

Podiatry,Otorhinolaryngology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3