In Vivo Measurement of Ear Ossicle and Bony Wall Vibration by Sound Stimulation of Cartilage Conduction

Author:

Yazama Hiroaki1ORCID,Arii Shiro2,Kataoka Hideyuki1,Watanabe Tasuku1,Kamitani Ryo1,Fujiwara Kazunori1

Affiliation:

1. Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-machi, Yonago 683-8504, Japan

2. Kanki Rotordynamics Lab, 1646 Higashikanki-cyo, Kakogawa 675-0057, Japan

Abstract

The cartilage-conduction pathway was recently proposed as a third auditory pathway; however, middle-ear vibrations have not yet been investigated in vivo. We aimed to measure the ossicles and bone vibration upon cartilage-conduction stimulation with a non-contact laser Doppler vibrometer. We recruited adult patients with normal ear structures who underwent cochlear implant surgery at our hospital between April 2020 and December 2022. For sound input, a cartilage-conduction transducer, custom-made by RION Corporation (Tokyo, Japan), was fixed to the surface of the tragus and connected to an audiometer to regulate the output. A posterior tympanotomy was performed and a laser beam was directed through the cavity to measure the vibration of the ossicles, cochlear promontory, and posterior wall of the external auditory canal. Five participants (three men, mean age: 56.4 years) were included. The mean hearing loss on the operative side was 96.3 dB HL in one patient, and that of the other patients was off-scale. The vibrations were measured at a sound input of 1 kHz and 60 dB. We observed vibrations of all three structures, demonstrating the existence of cartilage-conduction pathways in vivo. These results may help uncover the mechanisms of the cartilage-conduction pathway in the future.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Podiatry,Otorhinolaryngology

Reference16 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3