Autonomous 6-DOF Manipulator Operation for Moving Target by a Capture and Placement Control System

Author:

Chen XiangORCID,Liu Peilin,Ying Rendong,Wen Fei

Abstract

The robot control technology combined with a machine vision system provides a feasible method for the autonomous operation of moving target. However, designing an effective visual servo control system is a great challenge. For the autonomous operation of the objects moving on the pipeline, this article is dedicated to developing a capture and placement control system for the six degrees of freedom (6-DOF) manipulator equipped with an eye-in-hand camera. Firstly, a path planning strategy of online capture and offline placement is proposed for real-time capture and efficient placement. Subsequently, to achieve the fast, stable, and robust capture for a moving target, a position-based visual servo (PBVS) controller is developed by combining estimated velocity feedforward and refined PID control. Feedforward control is designed using the estimated velocity by a proposed motion estimation method for high response speed. PID control is refined by dead zone constraint to reduce the manipulator’s jitter caused by the frequent adjustment of manipulator control system. Besides, the proportional, integral, and differential coefficients of PID controller are adaptively tuned by fuzzy control to reject the noise, disturbance, and dynamic variation in the capture process. Finally, validation experiments are performed on the constructed ROS–Gazebo simulation platform, demonstrating the effectiveness of the developed control system.

Funder

Fund Project of Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3