Towards Improved Vehicular Information-Centric Networks by Efficient Caching Discovery

Author:

Rondon Lucas B.ORCID,Immich RogerORCID,Filho Geraldo P. RochaORCID,Venâncio Neto AugustoORCID,Leone Maciel Peixoto MayconORCID,Villas Leandro A.ORCID

Abstract

The number of connected cars and the massive consumption of digital content on the Internet have increased daily. However, the high mobility of the vehicles, coming from patterns’ variation over time, makes efficient large-scale content distribution quite challenging. In light of this, the emerging Vehicular Named Data Network (VNDN) architecture provides support for content-centric network communications and caching capabilities, which allows reliable and larger-scale content delivery over Vehicular Ad-Hoc Networks (VANETs). This notwithstanding, the high number of interest packets in VNDN tends to introduce broadcast storm occurrences during the cache discovery process. Thus, network performance degradation comes up for the influence of both increased packet loss rates and delays on content recovery during communication between vehicles. This work proposes a new cache discOVEry pRoTocol (OVERT VNDN), which combines the computational geometry and degree centrality concepts to tackle the VNDN performance degradation challenges and issues. The main idea behind OVERT VNDN is to choose the most appropriate relay vehicles to engage interest packets’ delivery within the VNDN, seeking to achieve higher network performance by optimizing broadcast storm incidence. The obtained results suggest that OVERT VNDN outperforms its competitor in the following key performance indicators: (i) improving the cache discovery process by 120.47%; (ii) enhancing the content delivery rate by 43%; and (iii) reducing the number of interest packets by 80.99%.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3