Impact of Rain Intensity on Interstate Traffic Speeds Using Connected Vehicle Data

Author:

Sakhare Rahul Suryakant1ORCID,Zhang Yunchang1,Li Howell1,Bullock Darcy M.1ORCID

Affiliation:

1. Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract

With the emergence of connected vehicle data and high-resolution weather data, there is an opportunity to develop models with high spatial-temporal fidelity to characterize the impact of weather on interstate traffic speeds. In this study, 275,422 trip records from 41,234 unique journeys on 42 rainy days in 2021 and 2022 were obtained. These trip records are categorized as no rain, slight rain, moderate rain, heavy rain, and very heavy rain periods using the precipitation rate from NOAA High-Resolution Rapid-Refresh (HRRR) data. It was observed that average speeds decreased by approximately 8.4% during conditions classified as very heavy rain compared to no rain. Similarly, the interquartile range of traffic speeds increased from 8.34 mph to 12.24 mph as the rain intensity increased. This study also developed a disaggregate approach using logit models to characterize the relationship between weather-related variables (precipitation rate, visibility, temperature, wind, and day or night) and interstate speed reductions. Estimation results reveal that the odds ratio of reducing speed is 5.8% higher for drivers if the precipitation rate is increased by 1 mm/h. The headwind was found to have a positive significant impact of only up to a 10% speed reduction, and speed reduction is greater during nighttime conditions compared to daytime conditions by a factor of 1.68. The additional explanatory variables shed light on drivers’ speed selection in adverse weather environments, providing more information than the single precipitation intensity measure. Results from this study will be particularly helpful for agencies and automobile manufacturers to provide advance warnings to drivers and establish thresholds for autonomous vehicle control.

Funder

Indiana Department of Transportation

Publisher

MDPI AG

Subject

General Medicine

Reference48 articles.

1. Analysis on Driver’s Driving Workload in Different Weather Conditions;J. Beijing Univ. Technol.,2011

2. Effects of weather and weather forecasts on driver behaviour;Summala;Transp. Res. Part F Traffic Psychol. Behav.,2007

3. (2020). How Do Weather Events Impact Roads?.

4. Effect of Weather on Free-Flow Speed;Kyte;Transp. Res. Rec. J. Transp. Res. Board,2001

5. Analysis of rainfall effects on road travel speed in Beijing, China;Zhang;IET Intell. Transp. Syst.,2018

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3