Design of a Hybrid Electric Vehicle Powertrain for Performance Optimization Considering Various Powertrain Components and Configurations

Author:

Tran Manh-KienORCID,Akinsanya Mobaderin,Panchal SatyamORCID,Fraser Roydon,Fowler MichaelORCID

Abstract

Emissions from the transportation sector due to the consumption of fossil fuels by conventional vehicles have been a major cause of climate change. Hybrid electric vehicles (HEVs) are a cleaner solution to reduce the emissions caused by transportation, and well-designed HEVs can also outperform conventional vehicles. This study examines various powertrain configurations and components to design a hybrid powertrain that can satisfy the performance criteria given by the EcoCAR Mobility Challenge competition. These criteria include acceleration, braking, driving range, fuel economy, and emissions. A total of five different designs were investigated using MATLAB/Simulink simulations to obtain the necessary performance metrics. Only one powertrain design was found to satisfy all the performance targets. This design is a P4 hybrid powertrain consisting of a 2.5 L engine from General Motors, a 150 kW electric motor with an electronic drive unit (EDU) from American Axle Manufacturing, and a 133 kW battery pack from Hybrid Design Services.

Publisher

MDPI AG

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3