Electric Drive Units: A Set-Up for Investigating Function, Efficiency, and Dynamics

Author:

Pointner-Gabriel Lukas1ORCID,Franzelin Thomas2ORCID,Morhard Bernd1ORCID,Schweigert Daniel1,Voelkel Katharina1,Stahl Karsten1ORCID

Affiliation:

1. Gear Research Center (FZG), Department of Mechanical Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching near Munich, Germany

2. Institute for Mechatronic Systems (IMS), Department of Mechanical Engineering, Technical University of Darmstadt, 64287 Darmstadt, Germany

Abstract

High-speed electric drive units promise improved power density and, theoretically, driving range of battery electric vehicles. An essential step of the development process is extensive testing of the drive unit on a test rig. In particular, at a high rotational speed level, experimental testing can be challenging. This paper describes a test rig for investigating the overall function of a high-speed drive unit and the transmission’s efficiency and dynamics. The high-speed drive unit developed in the Speed4E research project was the reference drive unit. The test rig is based on the concept of electrical power circulation. Thus, the test rig can be used universally for different drive unit designs and operating modes. A reaction torque measurement unit was developed to enable measurements at high rotational speeds. Simultaneously, this unit allows robust measurements at low costs. The expected measurement uncertainties of torque, rotational speed, transmission efficiency, and power losses were calculated using the Monte Carlo method. The results demonstrate that the developed torque measurement unit combines precise torque measurement with a robust design and low costs, making it competitive with state-of-the-art solutions for torque measurement at high speeds.

Funder

Federal Ministry for Economic Affairs and Energy

Project Management Agency DLR

Research Association for Drive Technology e.V.

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3