Advantage Actor-Critic for Autonomous Intersection Management

Author:

Ayeelyan JohnORCID,Lee Guan-Hung,Hsu Hsiu-Chun,Hsiung Pao-AnnORCID

Abstract

With increasing urban population, there are more and more vehicles, causing traffic congestion. In order to solve this problem, the development of an efficient and fair intersection management system is an important issue. With the development of intelligent transportation systems, the computing efficiency of vehicles and vehicle-to-vehicle communications are becoming more advanced, which can be used to good advantage in developing smarter systems. As such, Autonomous Intersection Management (AIM) proposals have been widely discussed. This research proposes an intersection management system based on Advantage Actor-Critic (A2C) which is a type of reinforcement learning. This method can lead to a fair and efficient intersection resource allocation strategy being learned. In our proposed approach, we design a reward function and then use this reward function to encourage a fair allocation of intersection resources. The proposed approach uses a brake-safe control to ensure that autonomous moving vehicles travel safely. An experiment is performed using the SUMO simulator to simulate traffic at an isolated intersection, and the experimental performance is compared with Fast First Service (FFS) and GAMEOPT in terms of throughput, fairness, and maximum waiting time. The proposed approach increases fairness by 20% to 40%, and the maximum waiting time is reduced by 20% to 36% in high traffic flow. The inflow rates are increased, average waiting time is reduced, and throughput is increased.

Publisher

MDPI AG

Subject

General Medicine

Reference45 articles.

1. Chang, G.L., and Xiang, H. (2003). The Relationship between Congestion Levels and Accidents, State Highway Administration. Technical Report, MD-03-SP 208B46.

2. Exploring the impact of traffic congestion on CO2 emissions in freight distribution networks;Kellner;Logist. Res.,2016

3. Intersection Coordination Scheme for Smooth Flows of Traffic Without Using Traffic Lights;Kamal;IEEE Trans. Intell. Transp. Syst.,2015

4. (2014). IEEE Guide for Wireless Access in Vehicular Environments (WAVE)—Architecture (Standard No. IEEE Std 1609.0-2013).

5. A Multiagent Approach to Autonomous Intersection Management;Dresner;J. Artif. Intell. Res.,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3