Velocity Prediction Based on Map Data for Optimal Control of Electrified Vehicles Using Recurrent Neural Networks (LSTM)

Author:

Deufel Felix,Jhaveri Purav,Harter Marius,Gießler Martin,Gauterin FrankORCID

Abstract

In order to improve the efficiency of electrified vehicle drives, various predictive energy management strategies (driving strategies) have been developed. This article presents the extension of a generic prediction approach already proposed in a previous paper, which allows a robust forecasting of all traction torque-relevant variables for such strategies. The extension primarily includes the proper utilization of map data in the case of an a priori known route. Approaches from Artificial Intelligence (AI) have proven to be effective for such proposals. With regard to this, Recurrent Neural Networks (RNN) are to be preferred over Feed-Forward Neural Networks (FNN). First, preprocessing is described in detail including a wide overview of both calculating the relevant quantities from global navigation satellite system (GNSS) data in several steps and matching these with data from the chosen map provider. Next, an RNN including Long Short-Term Memory (LSTM) cells in an Encoder–Decoder configuration and a regular FNN are trained and applied. The models are used to forecast real driving profiles over different time horizons, both including and excluding map data in the model. Afterwards, a comparison is presented, including a quantitative and a qualitative analysis. The accuracy of the predictions is therefore assessed using Root Mean Square Error (RMSE) computations and analyses in the time domain. The results show a significant improvement in velocity prediction with LSTMs including map data.

Publisher

MDPI AG

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Approach for a Predictive Online ECMS Applied in Electrified Vehicles Using Real Driving Data;World Electric Vehicle Journal;2023-12-18

2. A Two-Stage Deep Learning Based Approach for Predicting Instantaneous Vehicle Speed Profiles on Road Networks;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

3. Synthesizing Vehicle Speed-Related Features with Neural Networks;Vehicles;2023-06-26

4. Generating Synthetic Vehicle Speed Records Using LSTM;IFIP Advances in Information and Communication Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3