A Novel Method for Clutch Pressure Sensor Fault Diagnosis

Author:

Lv Zhichao,Wu Guangqiang

Abstract

As a crucial output component, a clutch pressure sensor is of great importance on monitoring and controlling a whole transmission system and a whole vehicle status, both of which play important roles in the safety and reliability of a vehicle. With the help of fault diagnosis, the fault state prediction of a pressure sensor is realized, and this lays the foundation for further fault-tolerant control. In this paper, a fault diagnosis method of Dual Clutch Transmission (DCT) is designed. Firstly, a Variable Force Solenoid (VFS) valve model is established. A feed-forward input system is added to correct the first-order inertial link of the sensor on the second step. Finally, the parameters of the established system model are identified by using the measured data of the actual transmission and the Genetic Algorithm (GA). An identified model is then used for designing a fault observer. The constant output faults of 0, 3, and 5 V, pulse fault, and bias fault that enterprises are concerned with are selected to simulate and verify the fault observer under four different operating conditions. The results show that the designed fault observer has great fault diagnosis performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A DCSLBP based intelligent machine malfunction detection model using sound signals for industrial automation systems;Computers and Electrical Engineering;2024-10

2. Smart Control of DCT Proportional Solenoid Valve Based on Data Mining;International Journal of Automotive Technology;2024-02-13

3. Pressure sensor fault-tolerant control for the filling phase of wet clutches;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2023-06-12

4. Active fault tolerant approach based on pressure optimal prediction and H∞ control;2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall);2022-09

5. Fault-tolerant control of clutch actuator motor in six-speed dry dual clutch transmission downshift process;Mechatronics;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3