Using Multimodal Large Language Models (MLLMs) for Automated Detection of Traffic Safety-Critical Events

Author:

Abu Tami Mohammad1ORCID,Ashqar Huthaifa I.23ORCID,Elhenawy Mohammed45ORCID,Glaser Sebastien4ORCID,Rakotonirainy Andry4

Affiliation:

1. Natural, Engineering and Technology Sciences Department, Arab American University, Jenin P.O Box 240, Palestine

2. Civil Engineering Department, Arab American University, Jenin P.O Box 240, Palestine

3. Artificial Intelligence Program, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA

4. CARRS-Q, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia

5. Centre for Data Science, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia

Abstract

Traditional approaches to safety event analysis in autonomous systems have relied on complex machine and deep learning models and extensive datasets for high accuracy and reliability. However, the emerge of multimodal large language models (MLLMs) offers a novel approach by integrating textual, visual, and audio modalities. Our framework leverages the logical and visual reasoning power of MLLMs, directing their output through object-level question–answer (QA) prompts to ensure accurate, reliable, and actionable insights for investigating safety-critical event detection and analysis. By incorporating models like Gemini-Pro-Vision 1.5, we aim to automate safety-critical event detection and analysis along with mitigating common issues such as hallucinations in MLLM outputs. The results demonstrate the framework’s potential in different in-context learning (ICT) settings such as zero-shot and few-shot learning methods. Furthermore, we investigate other settings such as self-ensemble learning and a varying number of frames. The results show that a few-shot learning model consistently outperformed other learning models, achieving the highest overall accuracy of about 79%. The comparative analysis with previous studies on visual reasoning revealed that previous models showed moderate performance in driving safety tasks, while our proposed model significantly outperformed them. To the best of our knowledge, our proposed MLLM model stands out as the first of its kind, capable of handling multiple tasks for each safety-critical event. It can identify risky scenarios, classify diverse scenes, determine car directions, categorize agents, and recommend the appropriate actions, setting a new standard in safety-critical event management. This study shows the significance of MLLMs in advancing the analysis of naturalistic driving videos to improve safety-critical event detection and understanding the interactions in complex environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3