Use Cases and Methods of Virtual ADAS/ADS Calibration in Simulation

Author:

Markofsky Moritz1,Schäfer Max2,Schramm Dieter2ORCID

Affiliation:

1. Porsche Engineering Services GmbH, Etzelstraße 1, 74321 Bietigheim-Bissingen, Germany

2. Chair of Mechatronics, Faculty of Engineering, University of Duisburg-Essen, 47057 Duisburg, Germany

Abstract

Integration, testing, and release of complex Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (ADS) is one of the main challenges in the field of automated driving. In order for the systems to be accepted by customers and to compete in the market, they have to feature functional, comfortable, safe, efficient, and natural driving behavior. The calibration process acquires increasing importance in the achievement of this objective. Complex ADAS/ADS require the optimization of interacting calibration parameters in a large number of different scenarios—a task that can hardly be performed with feasible effort and cost using conventional calibration methods. Virtual calibration in simulation enables reproducible and automated testing of different data sets of calibration parameters in various scenarios. These capabilities facilitate different use cases to extend the conventional calibration process of ADAS/ADS through virtual testing. This paper discusses the different use cases of virtual calibration and methods to achieve the desired objectives. A special focus is on a multi-scenario-level method that can be used to iteratively calibrate ADAS/ADS for optimal behavior in a variety of scenarios, resulting in a more comfortable, safe, and natural behavior of the system and still a feasible number of test cases. The presented methods are implemented for the virtual calibration of an Adaptive Cruise Control model for evaluation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Automotive Engineering

Reference31 articles.

1. SAE International (2021). J3016_202104—Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, SAE International.

2. Hakuli, S., and Krug, M. (2015). Handbuch Fahrerassistenzsysteme, Springer Vieweg.

3. (2020). Operational Design Domain (ODD) Taxonomy for an Automated Driving System (ADS)—Specification (Standard No. PAS 1883:2020).

4. Ulbrich, S., Menzel, T., Raschka, A., Schuldt, F., and Maurer, M. (2015). Fahrerassistenzworkshop.

5. (2022). Road Vehicles—Safety of the Intended Functionality (Standard No. ISO 21448:2022-06).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3