A Co-Simulation Platform with Tire and Brake Thermal Model for the Analysis and Reproduction of Blanking

Author:

Romagnuolo Fabio1ORCID,Avolio Stefano1ORCID,Fichera Gabriele2ORCID,Ruffini Marco1ORCID,Stefanelli Raffaele1ORCID,Timpone Francesco1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy

2. Department of Civil Engineering and Architecture, University of Catania, 95123 Catania, Italy

Abstract

In the world of motorsports engineering, improving brake performance is a crucial goal. One significant factor that affects this performance is the increase in brake disc temperature due to reduced cooling airflow, a phenomenon called “blanking”. This temperature increase also impacts the rim and the air inside the tire, causing changes in tire temperature and pressure, which affects the vehicle’s performance. Properly adjusting the brake blanking can be essential to keep the tire running at the right temperature, resulting in maximization of the performance on track. To address this complex problem, this study describes the problem of cooling brake discs, and this problem is then used as an opportunity to introduce a new variable in order to optimize the performance of the vehicle. By changing the thermal evolution of the brake disc, through the blanking, it can change a large percentage of heat that heats the tire. When combining an existing brake model in the literature with a tire thermal model in a co-platform simulation, it was seen that it is possible to work these two models together with the aim of being able to obtain the prediction of the optimal blanking value to be adopted before proceeding on track, thus saving time and costs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Automotive Engineering

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3