Transport Automation in Urban Mobility: A Case Study of an Autonomous Parking System

Author:

Plihal JiriORCID,Nedoma Pavel,Sestak Vladimir,Herda Zdenek,Aksjonov AndreiORCID

Abstract

Parking road vehicles is one of the most tedious and challenging tasks a human driver performs. Despite the low speeds involved, parking manoeuvres are among the main causes of minor and sometimes major traffic accidents, especially in urban areas where limited parking spaces are available. Furthermore, searching for a parking space wastes time and contributes to unnecessary road occupancy and pollution. This paper is dedicated to the development of an autonomous parking system for on-street parking in urban areas. The system is capable of fully automated parking manoeuvres from drop-off to pick-up zones, thus removing human drivers from the vehicle control loop. The system autonomously navigates to the parking space and parks the vehicle without human intervention. The proposed system incorporates a communication protocol that connects automated vehicles, parking infrastructure, and drivers. Several convenient human–machine interface concepts for efficient system communication and state monitoring have been developed. A methodology for validating the system in real time is proposed, which includes functionality requirements and a description of parallel and perpendicular parking manoeuvres. The proposed pipeline is tested on an electric vehicle platform with automated functions, where successful technological functionality is demonstrated.

Funder

KIC Urban Mobility

Publisher

MDPI AG

Reference37 articles.

1. Investigation and Prosecution of Distracted Driving Cases,2017

2. Autonomous Vehicle Implementation Predictions;Litman,2020

3. Autonomous Vehicles Heaven or Hell? Creating a Transportation Revolution That Benefits All;Creger,2019

4. SAE International: Levels of Autonomous Driving and Sensor Packages;Grayned,2020

5. Towards a Fog-Enabled Intelligent Transportation System to Reduce Traffic Jam

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3