Highly Discriminative Driver Distraction Detection Method Based on Swin Transformer

Author:

Zhang Ziyang12,Yang Lie13ORCID,Lv Chen13

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China

2. Brunel London School, North China University of Technology, Beijing 100144, China

3. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

Driver distraction detection not only helps to improve road safety and prevent traffic accidents, but also promotes the development of intelligent transportation systems, which is of great significance for creating a safer and more efficient transportation environment. Since deep learning algorithms have very strong feature learning abilities, more and more deep learning-based driver distraction detection methods have emerged in recent years. However, the majority of existing deep learning-based methods are optimized only through the constraint of classification loss, making it difficult to obtain features with high discrimination, so the performance of these methods is very limited. In this paper, to improve the discrimination between features of different classes of samples, we propose a high-discrimination feature learning strategy and design a driver distraction detection model based on Swin Transformer and the highly discriminative feature learning strategy (ST-HDFL). Firstly, the features of input samples are extracted through the powerful feature learning ability of Swin Transformer. Then, the intra-class distance of samples of the same class in the feature space is reduced through the constraint of sample center distance loss (SC loss), and the inter-class distance of samples of different classes is increased through the center vector shift strategy, which can greatly improve the discrimination of different class samples in the feature space. Finally, we have conducted extensive experiments on two publicly available datasets, AUC-DD and State-Farm, to demonstrate the effectiveness of the proposed method. The experimental results show that our method can achieve better performance than many state-of-the-art methods, such as Drive-Net, MobileVGG, Vanilla CNN, and so on.

Funder

Jilin University: Foundation of State Key Laboratory of Automotive Simulation and Control

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3