Shared Automated Electric Vehicle Prospects for Low Carbon Road Transportation in British Columbia, Canada

Author:

Atabay OrhanORCID,Djilali NedORCID,Crawford CurranORCID

Abstract

This study explores the long-term energy use implications of electrification, automation and sharing of road vehicles in British Columbia, Canada. Energy use is first analyzed for the years 1990–2016 for forward forecasting, and hypothetical scenarios ranging from conservative to disruptive, incorporating various effects of road vehicle electrification, sharing and automation, as well as influences of other technology disruptions, such as online shopping and e-learning are presented and used to project the road transportation energy use in B.C. to 2060. Transportation energy use projections are compared to those of the Canadian Energy Regulator (CER). When considering only the effect of vehicle electrification, the scenarios show higher energy savings compared to CER’s scenarios. The combined impact of vehicle electrification and automation leads to decreased energy use to 2060 for all scenarios considered. The energy savings for all scenarios, except for the conservative one, are higher than CER’s projections. When the effects of vehicle electrification, automation and sharing are merged, all scenarios yield energy savings beyond the CER projections. Inclusion of other technology disruptions and the effects of pandemics like COVID-19 reduce transportation demand and provide further energy savings. The BAU scenario given in this study shows energy use decreases compared to 2016 of 26.3%, 49%, 62.24%, 72.1% for the years 2030, 2040, 2050, and 2060 respectively.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nature-Inspired Optimal Route Network Design for Shared Autonomous Vehicles;Vehicles;2022-12-24

2. Modeling of an Electric Vehicle and State of the Battery;2022 1st International Conference on Sustainable Technology for Power and Energy Systems (STPES);2022-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3