Benchmarking of Dedicated Hybrid Transmissions

Author:

Sieg Christian,Küçükay Ferit

Abstract

For many manufacturers, hybridization represents an attractive solution for reducing the energy consumption of their vehicles. However, electrification offers a wide range of possibilities for implementing powertrain concepts. The concepts can differ regarding their mechanical complexity and the required power of the electrical machines. In this article, drive concepts that differ in their functionality and drive train topology are compared. Based on requirements for the C, D, and E segment, the mechanical and electrical effort of the concepts is analyzed. The results show that the mechanical effort in the C segment can be reduced as long as the electrical effort is increased. In case of higher vehicle segments, the electrical effort can increase considerably, making concepts with increased mechanical complexity more suitable. The driving performance and efficiency in hybrid operation are evaluated via simulation. The results show that the difference of acceleration times in hybrid operation between a charged and discharged battery is lower for mechanically complex concepts. At the same time, they achieve lower CO2 emissions. Therefore, these concepts represent a better compromise regarding performance and efficiency. Despite lower transmission efficiencies in hybrid operation, they achieve conversion qualities similar to simpler concepts and lower emissions with lower electrical effort.

Publisher

MDPI AG

Reference11 articles.

1. Development of New Plug-In Hybrid Transaxle for Compact-Class Vehicles;Suzuki,2017

2. Concept and Approach of Multi Stage Hybrid Transmission;Imamura,2017

3. Development of Multi Stage Hybrid System for New Lexus Coupe

4. The Next Generation “Voltec” Extended Range EV Propulsion System;Conlon,2015

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3