The Effect of the Traction Rod on the Vertical Vibration Behavior of the Railway Vehicle Carbody

Author:

Dumitriu Mădălina1ORCID,Apostol Ioana Izabela1

Affiliation:

1. Department of Railway Vehicles, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania

Abstract

Although research has shown that through the additional rigidity introduced in the secondary suspension, traction rods can affect the vertical dynamic performance of railway vehicles, this topic has been less studied by researchers in the field. In this paper, the effect of a traction rod on the vertical vibration behavior of a carbody of a railway vehicle is analyzed, using the results obtained through numerical simulations. Numerical simulation applications are developed based on a vehicle model, where the vehicle carbody is modeled using a free-free equivalent beam Euler–Bernoulli, and the bogie chassis and wheelsets are represented by rigid bodies linked together by Kelvin-Voigt systems that model the secondary suspension and the primary suspension. The novelty element of this paper is found in the model of the traction rod. This includes traction rod damping, which has been neglected in previous research. The stiffness and damping of the traction rod are represented by a longitudinal Kelvin–Voigt system integrated into a secondary suspension model. The effect of the traction rod on the vertical vibration behavior of the vehicle carbody is analyzed based on the power spectral density of the acceleration, the root mean square of acceleration, and the ride comfort index, for three cases for analysis: a ‘without traction rod’ case, a ‘with traction rod—with damping’ case, and a ‘with traction rod—without damping’ case. The conclusions of the paper highlight the influence of the stiffness and damping of the traction rod on the vibration level of the carbody, especially in its middle. Depending on the stiffness of the traction rod, significant increases in the ride comfort index are obtained, which at high velocities can exceed 300%. Damping of the traction rod reduces the ride comfort index by up to 10%.

Funder

Ministry of Research, Innovation and Digitization, CCCDI—UEFISCDI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3