Contribution of the Web of Things and of the Opportunistic Computing to the Smart Agriculture: A Practical Experiment

Author:

Touseau Lionel,Sommer Nicolas

Abstract

With the emergence of the Internet of Things, environmental sensing has been gaining interest, promising to improve agricultural practices by facilitating decision-making based on gathered environmental data (i.e., weather forecasting, crop monitoring, and soil moisture sensing). Environmental sensing, and by extension what is referred to as precision or smart agriculture, pose new challenges, especially regarding the collection of environmental data in the presence of connectivity disruptions, their gathering, and their exploitation by end-users or by systems that must perform actions according to the values of those collected data. In this paper, we present a middleware platform for the Internet of Things that implements disruption tolerant opportunistic networking and computing techniques, and that makes it possible to expose and manage physical objects through Web-based protocols, standards and technologies, thus providing interoperability between objects and creating a Web of Things (WoT). This WoT-based opportunistic computing approach is backed up by a practical experiment whose outcomes are presented in this article.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference38 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3