Fog vs. Cloud Computing: Should I Stay or Should I Go?

Author:

Pisani FláviaORCID,Martins do Rosario Vanderson,Borin Edson

Abstract

In this article, we work toward the answer to the question “is it worth processing a data stream on the device that collected it or should we send it somewhere else?”. As it is often the case in computer science, the response is “it depends”. To find out the cases where it is more profitable to stay in the device (which is part of the fog) or to go to a different one (for example, a device in the cloud), we propose two models that intend to help the user evaluate the cost of performing a certain computation on the fog or sending all the data to be handled by the cloud. In our generic mathematical model, the user can define a cost type (e.g., number of instructions, execution time, energy consumption) and plug in values to analyze test cases. As filters have a very important role in the future of the Internet of Things and can be implemented as lightweight programs capable of running on resource-constrained devices, this kind of procedure is the main focus of our study. Furthermore, our visual model guides the user in their decision by aiding the visualization of the proposed linear equations and their slope, which allows them to find if either fog or cloud computing is more profitable for their specific scenario. We validated our models by analyzing four benchmark instances (two applications using two different sets of parameters each) being executed on five datasets. We use execution time and energy consumption as the cost types for this investigation.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fog-Assisted Framework for Intelligent Video Preprocessing in Cloud-Based Video Surveillance as a Service;IEEE Transactions on Sustainable Computing;2022-10-01

2. OffFog: An Approach to Support the Definition of Offloading Policies on Fog Computing;Wireless Communications and Mobile Computing;2022-01-04

3. Classification Aspects of the Data Offloading Process Applied to Fog Computing;Computational Science and Its Applications – ICCSA 2021;2021

4. Hybrid wireless aided volunteer computing paradigm;Wireless Networks;2020-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3