Specific Antibody Fragment Ligand Traps Blocking FGF1 Activity

Author:

Chudzian Julia,Szlachcic Anna,Zakrzewska Malgorzata,Czub Miroslawa,Pustula Marcin,Holak Tad,Otlewski JacekORCID

Abstract

Fibroblast growth factor 1 (FGF1) and its receptors (FGFRs) regulate crucial biological processes such as cell proliferation and differentiation. Aberrant activation of FGFRs by their ligands can promote tumor growth and angiogenesis in many tumor types, including lung or breast cancer. The development of FGF1-targeting molecules with potential implications for the therapy of FGF1-driven tumors is recently being considered a promising approach in the treatment of cancer. In this study we have used phage display selection to find scFv antibody fragments selectively binding FGF1 and preventing it from binding to its receptor. Three identified scFv clones were expressed and characterized with regard to their binding to FGF1 and ability to interfere with FGF1-induced signaling cascades activation. In the next step the scFvs were cloned to scFv-Fc format, as dimeric Fc fusions prove beneficial in prospective therapeutic application. As expected, scFvs-Fc exhibited significantly increased affinity towards FGF1. We observed strong antiproliferative activity of the scFvs and scFvs-Fc in the in vitro cell models. Presented antibody fragments serve as novel FGF1 inhibitors and can be further utilized as powerful tools to use in the studies on the selective cancer therapy.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3