Abstract
Sepsis and septic shock are the leading causes of death in non-coronary intensive care units worldwide. During sepsis-associated immune dysfunction, the early/hyper-inflammatory phase transitions to a late/hypo-inflammatory phase as sepsis progresses. The majority of sepsis-related deaths occur during the hypo-inflammatory phase. There are no phase-specific therapies currently available for clinical use in sepsis. Metabolic rewiring directs the transition from hyper-inflammatory to hypo-inflammatory immune responses to protect homeostasis during sepsis inflammation, but the mechanisms underlying this immuno-metabolic network are unclear. Here, we review the roles of NAD+ sensing Sirtuin (SIRT) family members in controlling immunometabolic rewiring during the acute systemic inflammatory response associated with sepsis. We discuss individual contributions among family members SIRT 1, 2, 3, 4 and 6 in regulating the metabolic switch between carbohydrate-fueled hyper-inflammation to lipid-fueled hypo-inflammation. We further highlight the role of SIRT1 and SIRT2 as potential “druggable” targets for promoting immunometabolic homeostasis and increasing sepsis survival.
Funder
National Institutes of Health
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献