Comparison of Antibacterial Adhesion When Salivary Pellicle Is Coated on Both Poly(2-hydroxyethyl-methacrylate)- and Polyethylene-glycol-methacrylate-grafted Poly(methyl methacrylate)

Author:

Lee Bor-Shiunn,Chen Yu-Jia,Wei Ta-Chin,Ma Tien-Li,Chang Che-Chen

Abstract

Although poly(2-hydroxyethyl methacrylate) (pHEMA) and polyethylene glycol methacrylate (PEGMA) have been demonstrated to inhibit bacterial adhesion, no study has compared antibacterial adhesion when salivary pellicle is coated on polymethyl methacrylate (PMMA) grafted with pHEMA and on PMMA grafted with PEGMA. In this study, PMMA discs were fabricated from a commercial orthodontic acrylic resin system (Ortho-Jet). Attenuated total reflection-Fourier transform infrared spectra taken before and after grafting confirmed that pHEMA and PEGMA were successfully grafted on PMMA. Contact angle measurements revealed PMMA-pHEMA to be the most hydrophilic, followed by PMMA-PEGMA, and then by PMMA. Zeta potential analysis revealed the most negative surface charges on PMMA-PEGMA, followed by PMMA-pHEMA, and then by PMMA. Confocal laser scanning microscopy showed green fluorescence in the background, indicating images that influenced the accuracy of the quantification of live bacteria. Both the optical density value measured at 600 nm and single plate-serial dilution spotting showed that pHEMA was more effective than PEGMA against Escherichia coli and Streptococcus mutans, although the difference was not significant. Therefore, the grafting of pHEMA and PEGMA separately on PMMA is effective against bacterial adhesion, even after the grafted PMMA were coated with salivary pellicle. Surface hydrophilicity, bactericidality, and Coulomb repulsion between the negatively charged bacteria and the grafted surface contributed to the effectiveness.

Funder

Ministry of Science and Technology, Taiwan

National Taiwan University Hospital

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3