Nonlinear Model Predictive Impedance Control of a Fully Actuated Hexarotor for Physical Interaction

Author:

Jiao Ran1ORCID,Li Jianfeng1ORCID,Rong Yongfeng2,Hou Taogang3

Affiliation:

1. Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

3. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

In this paper, the problem of a fully actuated hexarotor performing a physical interaction with the environment through a rigidly attached tool is considered. A nonlinear model predictive impedance control (NMPIC) method is proposed to achieve the goal in which the controller is able to simultaneously handle the constraints and maintain the compliant behavior. The design of NMPIC is the combination of a nonlinear model predictive control and impedance control based on the dynamics of the system. A disturbance observer is exploited to estimate the external wrench and then provide compensation for the model which was employed in the controller. Moreover, a weight adaptive strategy is proposed to perform the online tuning of the weighting matrix of the cost function within the optimal problem of NMPIC to improve the performance and stability. The effectiveness and advantages of the proposed method are validated by several simulations in different scenarios compared with the general impedance controller. The results also indicate that the proposed method opens a novel way for interaction force regulation.

Funder

Beijing Postdoctoral Science Foundation

Young Elite Scientists Sponsorship Program by CAST

China Postdoctoral Science Foundation

National Science Foundation of China

Fundamental Research Funds for the Central Universities

Beijing Natural Science Foundation

Beijing Laboratory for Urban Mass Transit

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3