Development of Anomaly Detectors for HVAC Systems Using Machine Learning

Author:

Borda Davide12ORCID,Bergagio Mattia12ORCID,Amerio Massimo12ORCID,Masoero Marco Carlo3ORCID,Borchiellini Romano23ORCID,Papurello Davide23ORCID

Affiliation:

1. EURIX, Corso Vittorio Emanuele II, 61, 10128 Turin, Italy

2. Energy Center Initiative, Polytechnic University of Turin, Via Paolo Borsellino, 38/16, 10138 Turin, Italy

3. Department of Energy (DENERG), Polytechnic University of Turin, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy

Abstract

Faults and anomalous behavior affect the operation of Heating, Ventilation and Air Conditioning (HVAC) systems. This causes performance loss, energy waste, noncompliance with regulations and discomfort among occupants. To prevent damage, automated, fast identification of faults in HVAC systems is needed. Fault Detection and Diagnosis (FDD) techniques are very effective for these purposes. The best FDD methods, in terms of cost effectiveness and data exploitation, are based on process history; i.e., on sensor data from automation systems. In this work, supervised and semi-supervised models were developed. Other than with regard to outdoor temperature and humidity, the input parameters of an HVAC system have few internal variables. Performance of traditional methods (e.g., VAR, Random Forest) is low, so Artificial Neural Networks (ANNs) were selected, since they can capture nonlinear relationships among features and are easily optimized. ANNs can detect simultaneous faults from different classes. ANN metrics are easily evaluated. The ground truth is obtained from process history (supervised case) and from a mix of deterministic methods and clustering (semi-supervised case). The derivation of the ground truth in the semi-supervised case, and extensive comparison with advanced supervised models, set this work apart from previous studies. The Mean Absolute Error (MAE) of the best supervised model was 0.032 over 15 min and 0.034 over 30 min. The Balanced Accuracy Score (BAS) of the best semi-supervised model was 86%.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference42 articles.

1. Hamilton, I., Kennard, H., Rapf, O., Kockat, J., Zuhaib, S., Simjanovic, J., and Toth, Z. (2021). 2021 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector, United Nations Environment Programme.

2. European Commission (2023, January 15). Impact Assessment Accompanying the Document “Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions Stepping Up Europe’s 2030 Climate Ambition. Investing in a Climate-Neutral Future for the Benefit of Our People”. SWD(2020) 176 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020SC0176.

3. Energy optimization methodology of multi-chiller plant in commercial buildings;Thangavelu;Energy,2017

4. Rajith, A., Soki, S., and Hiroshi, M. (2018, January 23–26). Real-time optimized HVAC control system on top of an IoT framework. Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain.

5. Bagheri, A., Genikomsakis, K.N., Koutra, S., Sakellariou, V., and Ioakimidis, C.S. (2021). Use of AI Algorithms in Different Building Typologies for Energy Efficiency towards Smart Buildings. Buildings, 11.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel study on power consumption of an HVAC system using CatBoost and AdaBoost algorithms combined with the metaheuristic algorithms;Energy;2024-09

2. High-performance humidity sensors based on reduced graphene oxide sheets decorated with cobalt and iron doped ZnO nanorods;Materials Today Communications;2024-08

3. Design and Implementation of an Advanced Temperature Control System for Maglev Transport;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

4. Anomaly Detection for HVAC System Maintenance Using Autoencoder Neural Network;2024 47th MIPRO ICT and Electronics Convention (MIPRO);2024-05-20

5. Real-Time Anomaly Detection in Large-Scale Sensor Networks using Isolation Forests;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3