Synthesis of g-C3N4 Derived from Different Precursors for Photodegradation of Sulfamethazine under Visible Light

Author:

Li Ke12,Chen Miaomiao1,Chen Lei1,Zhao Songying1,Xue Wencong1,Han Zixuan1,Han Yanchao2

Affiliation:

1. Key Laboratory of Song Liao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China

2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Abstract

In this study, a series of g-C3N4 nanosheets were prepared by various thermal oxidative etching times from four different precursors (urea, melamine, dicyandiamide and thiourea). The physicochemical properties of these g-C3N4 nanosheets were analyzed in detail using scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence emission spectra, Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) analysis and ultraviolet-visible diffuse reflectance. The results revealed that the g-C3N4 nanosheets obtained a thinner layer thickness and larger specific surface area, with an extension of thermal oxidative etching time. Meanwhile, sulfamethazine (SMZ), one of the most widely used sulfonamides, was used to evaluate the photocatalyst activity of the g-C3N4 nanosheets prepared in this study. Compared to other g-C3N4 nanosheets, urea-derived g-C3N4 nanosheets under 330 min thermal oxidative etching showed the highest photocatalytic activity for SMZ under visible light. In conclusion, our study provides detailed insights into the synthesis and characterization of g-C3N4 nanosheets prepared from various precursors and highlights the importance of thermal oxidative etching time in determining the photocatalytic activity of these materials.

Funder

National Natural Science Foundation of China

Science and Technology Research Planning Project of Jilin Provincial Department of Education

Technology Research Planning Project of Jilin Provincial Department of Education

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3