Utilization of Cold Energy from LNG Regasification Process: A Review of Current Trends

Author:

Noor Akashah Muhammad Haziq1ORCID,Mohammad Rozali Nor Erniza12,Mahadzir Shuhaimi12,Liew Peng Yen3ORCID

Affiliation:

1. Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

2. Centre for Systems Engineering (CSE), Institute of Autonomous Systems, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

3. Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia

Abstract

Liquified natural gas (LNG) is a clean primary energy source that is growing in popularity due to the distance between natural gas (NG)-producing countries and importing countries. The large amount of cold energy stored in LNG presents an opportunity for sustainable technologies to recover and utilize this energy. This can enhance the energy efficiency of LNG regasification terminals and the economic viability of the LNG supply chain. The energy stored in LNG in the form of low temperatures is referred to as cold energy. When LNG is regasified, or converted back into its gaseous form, this cold energy is released. This process involves heating the LNG, which causes it to vaporize and release its stored energy. The current state-of-the-art techniques for LNG cold energy utilization, including power generation, air separation, traditional desalination, and cryogenics carbon dioxide (CO2) capture are discussed in this review. While most of the current LNG cold energy utilization systems are presented, potential future applications are also discussed. The commercialization of sustainable technologies, such as improvement strategies for LNG cold energy utilization, is becoming increasingly important in the energy industry.

Funder

YUTP

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference121 articles.

1. BP, p.l.c (2022, December 22). BP Energy Outlook 2035: February 2015. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2015.pdf.

2. (2022, December 22). ExxonMobil Outlook For Energy: A Perspective to 2040. Available online: https://corporate.exxonmobil.com/-/media/Global/Files/outlook-for-energy/2019-Outlook-for-Energy_v4.pdf.

3. Ritchie, H., Roser, M., and Rosado, P. (2022, December 23). CO2 and Greenhouse Gas Emissions. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions.

4. Relative Contributions of Greenhouse Gas Emissions to Global Warming;Lashof;Nature,1990

5. International Energy Agency (2015). World Outlook Energy 2015, Organization for Economic Cooperation and Development OECD.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3