Effect of Baffles in Flow Channel on the Performance of Vanadium Redox Flow Battery

Author:

Wu Horng-Wen1,Zeng Yi-Kai1

Affiliation:

1. Department of System and Naval Mechatronic Engineering, National Cheng Kung University, Tainan 70101, Taiwan

Abstract

For a PEMFC to work better, adding baffles to a flow channel can improve reactant transfer. As a result, the work starts by developing a 3-D numerical model for the vanadium redox flow battery (VRFB) using COMSOL Multiphysic Simulation Software. By incorporating baffles into the serpentine flow channel, it is possible to simulate changes in ion concentration and terminal voltage. The findings indicate that the battery efficiency will be impacted by adding baffles. The authors also studied the effect of baffle height and baffle count. The baffle height of 0.9 times the channel height and baffle number of 9 has a better performance on the battery. There are four cases for installing nine baffles and four arranging types in the entire serpentine flow using such baffle height and number. In Case 4, baffles are placed uniformly at the location of channel numbers 1, 9, and 17 in the serpentine flow path. It has a better voltage and ion concentration reaction than the other cases. The unit tests for cell performances were experimentally analyzed for a smooth-serpentine channel and a baffled-serpentine one. According to the experimental findings, a higher volume rate (300 mL/min) and lower current per area (40 mA/cm2) acquire the best energy efficiency. Case 4 has a higher energy efficiency than the smooth channel.

Funder

Ministry of Science and Technology of the Republic of China, Taiwan

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3