Multi-Sensor Data Fusion for Real-Time Multi-Object Tracking

Author:

Senel Numan1,Kefferpütz Klaus12,Doycheva Kristina2,Elger Gordon12

Affiliation:

1. Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany

2. Fraunhofer-Anwendungszentrum Vernetzte Mobilität und Infrastruktur, Stauffenbergstrasse 2a, 85051 Ingolstadt, Germany

Abstract

Sensor data fusion is essential for environmental perception within smart traffic applications. By using multiple sensors cooperatively, the accuracy and probability of the perception are increased, which is crucial for critical traffic scenarios or under bad weather conditions. In this paper, a modular real-time capable multi-sensor fusion framework is presented and tested to fuse data on the object list level from distributed automotive sensors (cameras, radar, and LiDAR). The modular multi-sensor fusion architecture receives an object list (untracked objects) from each sensor. The fusion framework combines classical data fusion algorithms, as it contains a coordinate transformation module, an object association module (Hungarian algorithm), an object tracking module (unscented Kalman filter), and a movement compensation module. Due to the modular design, the fusion framework is adaptable and does not rely on the number of sensors or their types. Moreover, the method continues to operate because of this adaptable design in case of an individual sensor failure. This is an essential feature for safety-critical applications. The architecture targets environmental perception in challenging time-critical applications. The developed fusion framework is tested using simulation and public domain experimental data. Using the developed framework, sensor fusion is obtained well below 10 milliseconds of computing time using an AMD Ryzen 7 5800H mobile processor and the Python programming language. Furthermore, the object-level multi-sensor approach enables the detection of changes in the extrinsic calibration of the sensors and potential sensor failures. A concept was developed to use the multi-sensor framework to identify sensor malfunctions. This feature will become extremely important in ensuring the functional safety of the sensors for autonomous driving.

Funder

Bundesministerium für Wirtschaft und Energie

Bayerisches Staatsministerium für Wirtschaft, Energie und Landesentwicklung

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3