The Mechanism of Channel Opening of Anion Channelrhodopsin GtACR1: A Molecular Dynamics Simulation

Author:

Liu Chunyan1,Xin Qi1,Qin Cai1,Jiang Maorui1,Lo Glenn V.2,Dou Yusheng2,Yuan Shuai1ORCID

Affiliation:

1. Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Department of Chemistry and Physical Sciences, Nicholls State University, P.O. Box 2022, Thibodaux, LA 70310, USA

Abstract

Guillardia theta anion channelrhodopsin 1 (GtACR1) is a widely used inhibitor of optogenetics with unique conductance mechanisms and photochemistry. However, the molecular mechanism of light-gated anion conduction is poorly understood without a crystal structure for the intermediate state. In this study, we built the dark-state model based on the crystal structure of retinal and isomerized the model by twisting the C12-C13=C14-C15 dihedral step by step using molecular dynamics simulation. The conformational changes revealed the all-trans to 13-cis photoisomerization of the retinal chromophore cannot open the channel. There is no water influx, and a pre-opened K-like intermediate after photoisomerization of retinal is formed. During the opening of the ion channel, proton transfer occurs between E68 and D234. Steered molecular dynamics (SMD) and umbrella sampling indicated that the E68 and D234 were the key residues for chloride-ion conducting. We propose a revised channel opening pathway model of GtACR1 after analyzing (de)protonation of E68 and D234. Reprotonation of D234 will result in two different early L intermediates, named L1-like and L1‘-like, which correspond to the L1 and L1‘ intermediates reported in a recent study. Simulation results showed that L1-like may convert by parallel paths into L1‘-like and L2-like states. This model provides conformational details for the intermediate as well.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3